抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

众所周知,Shiny 是 Rstudio 开发的一款基于 R 语言的网页应用程序,允许用户将 R 功能脚本编写成简易的 UI 界面,从而允许不懂编程的人使用,但是 R 语言的语法和功能较为复杂,且执行效率较低,对并发的支持也不好。幸好,Rstudio 同时开发了基于 Python 的 Shiny 程序,且最近新推出的 Express 功能让代码更加的简洁,本文将介绍如何使用 Shiny Express 开发一个简易但功能完善的 AI 绘画 APP。

如何安装 Shiny Express

大家可以访问官方网站进行了解,简单来说我们简易构建一个纯净的虚拟环境,然后安装对应的包即可,例如:

mkdir myapp
cd myapp
# Create a virtual environment in the .venv subdirectory
python3 -m venv .venv
# Activate the virtual environment
source .venv/bin/activate

然后在虚拟环境下安装 Shiny Express:

pip install shiny

#或者安装开发版本
pip install git+https://github.com/posit-dev/py-htmltools.git
pip install git+https://github.com/posit-dev/py-shiny.git

AI 绘画 API

我们的 AI 绘画 API 还是来自 CloudFlare 的flux 模型,具体参照前文:
如何使用 Python 调用 CloudFlare WorkerAI 提供的 Flux 模型

代码结构

- myapp  ### 这里是主目录
- app.py ### 这个是主程序
- utils.py ### 这里写调取API的功能
- .venv ### 虚拟环境

调取API的功能的实现(utils.py)

我们要实现以下功能:

  1. 调用 API 获取图片
  2. 图片保存到本地
  3. 使用大语言模型对提示词翻译并优化
  4. 全程使用异步函数

具体的代码如下:

import base64
from openai import AsyncOpenAI
from pathlib import Path
import tempfile
import aiohttp
import asyncio

class WorkerImage():
def __init__(self, account_id, api_token):
self.flux_system_prompt = "...提示词前文有提到,这里不重复写了"
self.account_id = account_id
self.api_token = api_token
self.endpoint = (
f"https://api.cloudflare.com/client/v4/accounts/{account_id}/ai/run/@cf/black-forest-labs/flux-1-schnell"
)
self.headers = {
"Authorization": f"Bearer {api_token}",
"Content-Type": "application/json",
}

async def _get_flux_image_data(self, prompt, num_steps):
payload = {
"prompt": prompt,
"num_steps": num_steps
}
async with aiohttp.ClientSession() as session:
async with session.post(self.endpoint, headers=self.headers, json=payload) as response:
if response.status == 400:
# raise error
return None
else:
result = await response.json()
image_data = base64.b64decode(result['result']['image'])
return image_data

def _save_image_to_tmp_file(self, image_data):
dir = Path(__file__).resolve().parent
with tempfile.NamedTemporaryFile(dir=dir, suffix='.png', delete=False) as f:
f.write(image_data)
temp_file_path = f.name
return temp_file_path

async def get_translate_promt(self, prompt):

client = AsyncOpenAI(
# This is the default and can be omitted
api_key=self.api_token,
base_url=f"https://api.cloudflare.com/client/v4/accounts/{self.account_id}/ai/v1",
max_retries=5,
)
chat_completion = await client.chat.completions.create(
messages=[
{
"role": "system",
"content": self.flux_system_prompt,
},
{
"role": "user",
"content": prompt,
}
],
model="@cf/meta/llama-3.3-70b-instruct-fp8-fast",
)
return chat_completion.choices[0].message.content

async def get_image(self, prompt, num_steps, is_translate=False):
new_prompts = ""
if is_translate:
new_prompts = await self.get_translate_promt(prompt)
else:
new_prompts = prompt
image_data = await self._get_flux_image_data(new_prompts, num_steps)
if image_data:
local_file = self._save_image_to_tmp_file(image_data)
local_file = local_file.split("/")[-1]
return local_file, new_prompts
else:
print("image data is None,please check your inputs")
return None, new_prompts

这个类需要使用account_id 和 API, 需要去 Cloudflare 获取!

主程序的实现(app.py)

我们要实现以下功能:

  1. 一个 NavaBar, 为后续增加功能准备
  2. 一个 SideBar, 用来收集用户的输入,作为主要交互区域
  3. 一个 MainPanel, 用来显示用户的输出

完成后的界面如图:

具体的代码如下:

from shiny.express import ui, render, input
from shiny import reactive
from utils import WorkerImage
from pathlib import Path

ui.page_opts(title="Image Generation", fillable=True, id="page")

prompts = reactive.value("a dog")
generated_image = reactive.value(None)

@reactive.effect
@reactive.event(input.submit)
async def generate_image():
account_id = "XXXXXXXXXXXXXXXXXXXXX"
api_key = "XXXXXXXXXXXXXXXXXXXXXXX"
worker = WorkerImage(account_id, api_key)
dir = Path(__file__).resolve().parent
final_link, new_prompts = await worker.get_image(input.prompt(), num_steps=input.steps(), is_translate=input.optim())
prompts.set(new_prompts)
if final_link is not None:
generated_image.set({"src": str(dir / final_link), "width": "500px"})

with ui.sidebar(width=450):
with ui.tooltip(placement="right"):
ui.input_text_area("prompt", "Prompt", placeholder="Enter your prompt here", rows=5)
"You can use English or Chinese to generate images."
ui.input_slider("steps", "Number of Steps:", min=1, max=8, value=4)
with ui.layout_columns(class_="d-flex align-items-center"):
with ui.tooltip(placement="bottom"):
ui.input_switch("optim", "Imagine", False)
"Switch on to optimize your prompt."
ui.input_action_button("submit", "Generate",class_="btn-primary")

with ui.nav_panel("AI Painting"):
with ui.card():
ui.card_header("Generated Images")
@render.image(delete_file=True)
def image():
return generated_image() if generated_image() is not None else None
with ui.card_footer("Optimized Prompts:"):
@render.text
def get_prompts():
return prompts()

是的,整个代码非常简洁,我们只用了很少的代码就完成了相当复杂的功能,值得称赞!

网站演示

可以访问以下链接访问演示网站:

评论